(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

*(*(x, y), z) → *(x, *(y, z))
*(+(x, y), z) → +(*(x, z), *(y, z))
*(x, +(y, f(z))) → *(g(x, z), +(y, y))

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f(z))) → *'(g(x, z), +'(y, y))

S is empty.
Rewrite Strategy: FULL

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
f/0
g/0
g/1

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))

Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
*'

(8) Obligation:

TRS:
Rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))

Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g

Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)

The following defined symbols remain to be analysed:
*'

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)

Induction Base:
*'(gen_+':f:g2_0(+(1, 0)), gen_+':f:g2_0(b))

Induction Step:
*'(gen_+':f:g2_0(+(1, +(n4_0, 1))), gen_+':f:g2_0(b)) →RΩ(1)
+'(*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)), *'(f, gen_+':f:g2_0(b))) →IH
+'(*3_0, *'(f, gen_+':f:g2_0(b)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))

Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g

Lemmas:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
*'(*'(x, y), z) → *'(x, *'(y, z))
*'(+'(x, y), z) → +'(*'(x, z), *'(y, z))
*'(x, +'(y, f)) → *'(g, +'(y, y))

Types:
*' :: +':f:g → +':f:g → +':f:g
+' :: +':f:g → +':f:g → +':f:g
f :: +':f:g
g :: +':f:g
hole_+':f:g1_0 :: +':f:g
gen_+':f:g2_0 :: Nat → +':f:g

Lemmas:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_+':f:g2_0(0) ⇔ f
gen_+':f:g2_0(+(x, 1)) ⇔ +'(gen_+':f:g2_0(x), f)

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
*'(gen_+':f:g2_0(+(1, n4_0)), gen_+':f:g2_0(b)) → *3_0, rt ∈ Ω(n40)

(16) BOUNDS(n^1, INF)